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Abstract

Epilepsy is a common and serious neurological disorder, with many different constitu-

ent conditions characterized by their electro clinical, imaging, and genetic features.

MRI has been fundamental in advancing our understanding of brain processes in the

epilepsies. Smaller-scale studies have identified many interesting imaging phenomena,

with implications both for understanding pathophysiology and improving clinical care.

Through the infrastructure and concepts now well-established by the ENIGMA Con-

sortium, ENIGMA-Epilepsy was established to strengthen epilepsy neuroscience by

greatly increasing sample sizes, leveraging ideas and methods established in other

ENIGMA projects, and generating a body of collaborating scientists and clinicians to

drive forward robust research. Here we review published, current, and future pro-

jects, that include structural MRI, diffusion tensor imaging (DTI), and resting state

functional MRI (rsfMRI), and that employ advanced methods including structural

covariance, and event-based modeling analysis. We explore age of onset- and

duration-related features, as well as phenomena-specific work focusing on particular

epilepsy syndromes or phenotypes, multimodal analyses focused on understanding

the biology of disease progression, and deep learning approaches. We encourage

groups who may be interested in participating to make contact to further grow and

develop ENIGMA-Epilepsy.

K E YWORD S

covariance, deep learning, DTI, event-based modeling, gene expression, genetics, imaging, MRI,

quantitative, rsfMRI
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1 | INTRODUCTION

ENIGMA-Epilepsy, the epilepsy working group of ENIGMA, was offi-

cially launched at The Royal Society, London in March 2015 by Chris-

topher Whelan (USC) and Sanjay Sisodiya (UCL) at a meeting of the

International League Against Epilepsy Consortium on Complex Epilep-

sies (https://www.ilae.org/guidelines/complex-epilepsies). The project

has continued to grow since its inception. It is now jointly led by

Carrie McDonald, Christopher Whelan, and Sanjay Sisodiya, and com-

prises 26 collaborating international centers. The original aims of the

group are multiple and include: to create a worldwide network of epi-

lepsy neuroimaging centers; to collect summary statistics on brain

shape, brain volume and white matter connectivity from thousands of

people with epilepsy and thousands of neurologically healthy controls;

to compare and contrast these measures in affected/unaffected

groups and, accordingly, illustrate possible differences between the

two; to identify structural differences between the major forms of

epilepsy and major types of seizure; and to develop collaborations and

infrastructure for future analyses. ENIGMA-Epilepsy was formed with

the intention of applying the idea that had proven effective in other

ENIGMA projects, based on large-scale, world-wide collaborative

efforts merging different types of biological data set (e.g., MRI,

genetic, EEG) to deepen understanding of neurobiology in health and

disease. Building on prior models in neuropsychiatric diseases, such as

schizophrenia (SCZ) and major depressive disorder (MDD), and in

imaging-genetic studies in healthy subjects, ENIGMA-Epilepsy

adopted the template from these existing projects within the ENIGMA

umbrella. We adapted the existing memorandum of understanding

(MoU), and replicated pathways for development and consolidation of

the consortium.

Prior to ENIGMA-Epilepsy, there was a rich existing literature on

MRI in epilepsy, with a number of productive groups working around

the world. MRI had already proven hugely valuable in clinical and

research application in the epilepsies. However, most published stud-

ies were only based on modestly sized samples, with typically fewer

than 100, and often fewer than 50, participants included. Unsurpris-

ingly, the limited power from such studies meant that findings from

different studies of the same problem were often contradictory or

inconclusive. In addition, new methods, many developed or

championed by ENIGMA, were successfully promoting the formal

joint analysis of disparate data sets, whether of the same type spread

across different centers (e.g., in Australia vs. Canada), or of different

types (e.g., MRI vs. genome-wide SNP data). In this context, the for-

mation of ENIGMA-Epilepsy was a natural step forward.

Here we describe projects completed or still in progress within

ENIGMA-Epilepsy, and our hopes for its future. The structure and

workflow is illustrated in Figure 1. We provide contact details and

invite any group with relevant resources and appropriate intent inter-

ested in joining the consortium to get in contact.

2 | PROJECTS AND PUBLICATIONS

The first projects within ENIGMA-Epilepsy were analyses of structural

and diffusion MRI data without any genetic, cognitive, or clinical out-

come data. These projects allowed the consortium to organize itself

and establish a modus operandi, and were based on distributed ana-

lyses, with each center applying a shared processing protocol locally

to its own data (from people with epilepsy and healthy controls

scanned on the same platform), with no exchange of raw image

(i.e., DICOM) data, and subsequent central collation and meta-analysis

and mega-analysis of the processed (i.e., region-of-interest) outputs.

These methods have been of proven utility, and have overcome

platform-related issues in cross-center analysis, as demonstrated by

the extensive publication record of ENIGMA as a whole (Thompson

et al., 2020).

The simplicity and effectiveness of this strategy shaped ENIGMA-

Epilepsy into an operational grouping, and has already led to measur-

able outcomes. The first three projects were a worldwide study of

brain structure in epilepsy, a similar study of diffusion MRI data, and

the first consortium approach to perform joint analysis of multiple

types of data to explore mechanisms underlying findings emerging

from the initial studies that were based solely on imaging data. Build-

ing on these three studies, members were encouraged to propose
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secondary projects, bringing new ideas, methods, and resources to

bear on the collated imaging data set.

2.1 | The first ENIGMA-Epilepsy study: A
worldwide study of brain structural changes in
epilepsy using quantitative structural MRI

By late summer of 2015, the working group had organized its first

conference calls and agreed upon a broad study design, which was to

apply ENIGMA's standardized image processing and meta-analysis

protocols across a large network of research groups, with the broad

goal of identifying robust patterns of gray matter alterations across

different forms of commonly-occurring epilepsy, addressing prior

inconsistencies from smaller-scale studies in the field.

For this inaugural project, the working group set out to compare

data from neurologically healthy individuals (total n = 1,727) to four

broad epilepsy subtypes, including (a) temporal lobe epilepsies (TLE)

with left mesial temporal sclerosis (n = 415), (b) TLE with right mesial

temporal sclerosis (n = 339), (c) genetic generalized epilepsies (GGE;

n = 367), and (d) all other epilepsies (n = 1,026), in addition to a fifth

collection of all epilepsies in aggregate (n = 2,149). Other epilepsy syn-

dromes, such as frontal lobe or occipital lobe epilepsies, were not

considered due to their limited presence across the majority of

research centers. In total, the study included 24 case–control samples,

recruited across 14 countries, aged 18–55 years. All syndromic epi-

lepsy classifications were conducted by clinical epilepsy specialists,

using International League Against Epilepsy (ILAE) systems, with

prespecified inclusion and exclusion criteria (details in Whelan

et al., 2018, Tables S1 and S2). These classifications were carried

through to subsequent studies.

T1-weighted MRI scans were acquired using a variety of plat-

forms at each research center (the majority comprising three Tesla

Siemens or Philips platforms, applying magnetization-prepared rapid

gradient echo [MP-RAGE] sequencing; details provided in Whelan

et al., 2018, Table S3). At each of the 24 sites, a trained neuroimaging

analyst conducted quality assessment of MRI scans using the

ENIGMA protocols, which included an initial segmentation step con-

ducted using FreeSurfer v5.3, whereby 12 subcortical brain regions

and 64 cortical regions were extracted from the T1-weighted image,

followed by a combination of automated outlier detection and

detailed visual inspection for each segmentation. MRI scans from each

of the five predefined epilepsy groups were then compared with

healthy controls using a series of linear regressions in R, adjusting for

age, sex, and intracranial volume. A series of linear regressions testing

the association between brain measures and age at onset of epilepsy,

F IGURE 1 Organizational diagram of ENIGMA-Epilepsy. The flowchart on the left shows the group set up, illustrating source of data used in
subsequent studies. The current workflow is illustrated on the right. ILAE, International League Against Epilepsy; MOU, Memorandum of
Understanding
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as well as overall duration of epilepsy, was also conducted at each

center. Summary statistics from these analyses (including Cohen's D

effect sizes and regression beta coefficients) were transferred from

each research center to a central analysis laboratory in the Imaging

Genetics Center at the University of Southern California, where they

were pooled across sites using a random-effects meta-analysis model.

F IGURE 2 An illustration of results from the first ENIGMA-Epilepsy study, of brain structural changes in epilepsy using quantitative structural
MRI. Cohen's d effect size estimates for case–control differences in cortical thickness, across the (a) all-epilepsies, (b) mesial temporal lobe
epilepsies with left hippocampal sclerosis (c) mesial temporal lobe epilepsies with right hippocampal sclerosis, (d) idiopathic generalized epilepsies,
and (e) all-other-epilepsies groups. Cohen's d effect sizes were extracted using multiple linear regressions, and pooled across research centers
using random-effects meta-analysis. Cortical structures with p-values <1.49 × 10−4 are shown in heatmap colors; strength of heat map is
determined by the size of the Cohen's d (d < 0 = blue, d > 0 = yellow/red). HS, hippocampal sclerosis. From Whelan et al., 2018
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Given the number of comparisons conducted as part of the study

(336 in total), the typical statistical significance threshold of p < .05

was Bonferroni-adjusted to p < 1.49 × 10−4.

The study revealed a series of robust structural brain alterations,

both within and across epilepsy syndromes (Figure 2) in section 1. As

expected, MTLEs showed profound volume reductions in the hippo-

campus ipsilateral to seizure onset (d < −1.7; p < 1.4 × 10−19). When

compared with healthy controls, left temporal lobe epilepsy (TLE)

appeared to show a more widespread and bilateral distribution of

extrahippocampal gray matter differences than did right TLE, resolving

prior inconsistent findings in smaller-scale studies. The right thalamus

(Cohen's d = −0.24 to −0.73; p < 1.49 × 10−4), and the bilateral

precentral gyri (d = −0.34 to −0.52; p < 4.31 × 10−6) showed evi-

dence of gray matter alterations across all five epilepsy subgroups

when compared with healthy controls, highlighting prior observations

that the thalamus may serve as a “hub” within a distributed function

network that becomes disrupted during epileptogenesis, and re-

emphasizing how focal seizures can lead to persistent, potentially

damaging hyperexcitability in distant cortical regions, particularly the

ipsilateral motor cortices (Hamer et al., 2005). Duration of epilepsy

showed a strong correlation with multiple subcortical volume and cor-

tical thickness measures, in keeping with recent findings that epilepsy

may be associated with progressive cortical atrophy (Galovic

et al., 2019); however, given that, our large study had a cross-sectional

design, these findings strongly emphasize the need for more large-

scale, longitudinal neuroimaging investigations of seizure disorders.

Bilateral enlargement of the amygdala, a finding previously—albeit

inconsistently—reported across “nonlesional” forms of TLE, was seen

in the “all other epilepsies” subgroup, warranting further investigation

of TLE with amygdala enlargement as its own distinct syndrome,

potentially with an autoimmune cause (Malter et al., 2016).

These findings from ENIGMA-Epilepsy's first major study were

discussed during an invited platform presentation at the annual meet-

ing of the Organization for Human Brain Mapping in 2016, and subse-

quently published in the journal Brain (Whelan et al., 2018). This initial

project solidified a framework for future large-scale investigations of

the epilepsies, with several in vitro, in vivo, and postmortem follow-up

investigations currently ongoing, as outlined below.

2.2 | White matter abnormalities across different
epilepsy syndromes in adults

Following the launch of the structural MRI study, efforts within the

consortium shifted toward meta-analysis of DTI data. Our scientific

premise was that epilepsy is a network disorder with widespread

white matter injury to regions that extend far beyond the identified

seizure focus with patterns that may be unique to each syndrome. We

elected to maintain a similar approach to the analysis followed in the

structural MRI study. However, there was consensus that further

dividing the epilepsy syndromes would be informative. As a result,

patients with TLE were divided into those with and without hippo-

campal sclerosis (HS) given prior evidence that these patient groups

may have different epileptogenic networks and harbor different pat-

terns of white matter loss (Mueller et al., 2009; Zaveri, Duckrow, De

Lanerolle, & Spencer, 2001). Our final sample consisted of 1,069

healthy controls and 1,466 patients with epilepsy, including mesial

TLE, nonlesional TLE (TLE-NL), GGE, and nonlesional extratemporal

epilepsy (ExE), making this the largest epilepsy DTI imaging study to

date. As a secondary analysis, we compared the effect size estimates

obtained in our aggregate group of epilepsy patients to those

obtained by other ENIGMA working groups, including MDD, SCZ,

bipolar disorder (BPD), and 22q11 syndrome.

We initially attempted the meta-analytic approach previously

used in ENIGMA-MDD (van Velzen et al., 2019) and ENIGMA-SCZ

(Kelly et al., 2018). However, this strategy was not ideal for our

patient data set, which included many different syndromes across

many sites. Although the contrasts of “all patients in aggregate” versus

controls produced robust and meaningful results, the syndrome-

specific results did not seem biologically plausible, likely due to the

small number of participants per syndrome at many sites. Therefore,

we instead pooled all the data together in a mega-analysis—an

approach that aggregates individual-participant data across sites.

Compared with meta-analyses, mega-analysis uses a more exact likeli-

hood specification, which avoids the assumptions of within-study nor-

mality and known within-study variances, such as sites with few

subjects, rare diagnoses, and/or unbalanced sample size between con-

trols and patients (Burke, Ensor, & Riley, 2017). This approach also

boosts statistical power and provides greater control of confounders

at the individual subject level (Debray, Moons, Abo-Zaid, Koffijberg, &

Riley, 2013). Mega-analyses are also robust to missing data and do

not require imputation or removal of entire subjects when single data

points are missing. The main reason for missing values in this data set

were the removal of extreme outliers (greater than ±3SD) which was

between 1 and 5 regions of interest per site per diffusion parameter.

Aggregating DTI data across sites also requires careful data har-

monization given the known variability in diffusion parameters across

scanner platforms. Following the approach utilized in two prior mega-

analyses, we applied a novel batch-effect correction tool, ComBat, to

adjust for scanner/site specific variations in diffusivity measures

(Fortin et al., 2017; Villalón-Reina et al., 2019; Zavaliangos-Petropulu

et al., 2019). ComBat uses an empirical Bayes framework to improve

the variance of the parameter estimates, assuming that all regions of

interest share the same common distribution. Inspection of the

corrected data suggested that ComBat successfully harmonized across

the sites/scanner instances while maintaining syndrome-specific fea-

tures that were biologically plausible.

Findings from our harmonized mega-analysis revealed microstruc-

tural abnormalities across major association, commissural, and projec-

tion fibers in patients with epilepsy (Figure 3). In our aggregate

analysis of all patients, lower FA was observed in most white matter

pathways, especially in the genu and body of the corpus callosum

(CC), cingulum (CING) and external capsule (EC). Syndrome-specific

FA/MD differences were most pronounced in patients with MTLE,

with large effect size differences in the ipsilateral parahippocampal

cingulum and EC, and small to medium effect sizes across most other

SISODIYA ET AL. 119

Golsa Talebi



tracts. TLE-NL showed a similar ipsilateral greater than contralateral

pattern, but with smaller effect size differences compared with MTLE.

Patients with GGE and ExE demonstrated the most pronounced effect

size differences in the CC and EC (FA), and anterior corona radiata

bilaterally (FA/MD). Earlier age of seizure onset and longer disease

duration were associated with altered white matter microstructure in

patients with right and left MTLE. As a whole group, patients showed

white matter perturbation in anterior, midline fibers, while the sever-

ity was different across the epilepsy syndromes. We observed a simi-

lar pattern of results in epilepsy patients to those observed in MDD,

SCZ, and BPD. We believe that these data can further inform our

understanding of epilepsy as a white matter network disorder with

both nonspecific (i.e., shared across brain disorders) and syndrome-

specific microstructural alterations. A next step for our consortium will

be to test whether white matter alterations identified in our mega-

analysis can predict postoperative seizure outcome or to discriminate

patients who are drug-responsive from those who are drug-resistant.

These follow-up studies will also explore age and sex effects more

comprehensively. Finally, there is interested in combining the

T1-derived structural data with the DTI-derived diffusion data to

investigate the multimodal interplay of brain structure and connectivity

in epilepsy. The current study is under review, with a preprint available

at https://www.biorxiv.org/content/10.1101/2019.12.19.883405v1.

2.3 | Gene expression and brain maps

As outlined above, the structural MRI analysis revealed widespread

differences in cortical thickness in people with epilepsy compared

with healthy controls. Although many cortical regions appeared to be

vulnerable (i.e., showed significantly thinner cortices) other regions

appeared to be unaffected by (protected from) the disease. In this

F IGURE 3 White matter abnormalities across different epilepsy syndromes in adults. Top: FA and MD across all patients with epilepsy. BCC,
body of corpus callosum, GCC, genu of corpus callosum; SCC, splenium of corpus callosum; ACR, anterior corona radiata; ALIC, anterior limb of
internal capsule; CGC, cingulum (cingulate gyrus); CGH, cingulum (hippocampal); CST, corticospinal tract; EC, external capsule; FX.ST, fornix (stria
terminalis); PCR, posterior corona radiata; PLIC, posterior limb of internal capsule; PTR, posterior thalamic radiation; RLIC, rentrolenticular part of
internal capsule; SCR, superior corona radiata; SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; SS, sagittal stratum;
TAP, tapetum; UNC, uncinate. Bottom: Radar plots of FA (left) and MD (right) across epilepsy syndromes

120 SISODIYA ET AL.

https://www.biorxiv.org/content/10.1101/2019.12.19.883405v1


follow-up project, we integrated these imaging results with the

detailed brain-wide gene expression atlas generated by the Allen Insti-

tute of Brain Science (Hawrylycz et al., 2012), to investigate whether

there was a molecular biological signature that explains the regional

vulnerability. Briefly, the gene expression atlas combines data from six

donors and provides the expression level for each of more than

F IGURE 4 Gene expression and brain maps. The study strategy leading to implication of microglia in cortical thinning. eQTL, expression
quantitative trait loci; ILAE, International League against Epilepsy; EpiPGX, Epilepsy Pharmacogenomics: delivering biomarkers for clinical use
project, www.epipgx.eu; LD, linkage disequilibrium; LPS, lipopolysaccharide
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21,000 genes at 3,702 locations in the cortex, subcortical regions, and

the cerebellum.

Our analysis found that over 2,500 genes exhibited higher

expression in vulnerable regions compared with protected regions

(Altmann et al., 2018). Detailed analysis of these overexpressed genes

showed enrichment for genes related to microglia and inflammation,

which suggested that vulnerable regions might exhibit a higher den-

sity in microglia. By further studying postmortem brain tissue from

individuals with nonlesional epilepsy, lesional epilepsy, and non-

epilepsy controls, we found higher microglia density across all tested

regions in samples from people with epilepsy compared with controls.

Thus, these results were consistent with the view that there was an

over-representation in brain tissue from people with chronic epilepsy

and that such microglial responses may occur in a regionally specific

manner. Finally, we turned to a mouse model of acquired epilepsy (Iori

et al., 2017) to establish a causal link between microglia activity and

cortical thinning. The experiments revealed cortical thinning in the

entorhinal cortex in epileptic mice compared with control mice, which

was partially due to reduced neuronal cell density and average neuro-

nal size. Importantly, appropriately timed microglial depletion (through

treatment with PLX3397) could prevent or substantially reduce the

amount of observed cortical thinning. The rescue was mainly acting

on neuronal cell density (neuronal size changes were not rescued).

Thus, taken together these findings incriminate potentially modifiable

microglial activation states in cortical thinning in the common human

epilepsies, and illustrate the value of the MRI data set available in

ENIGMA-Epilepsy (Figure 4): no other tool (PET, histopathology)

would have generated such a large-scale and well-powered initial data

set to drive these follow-on analyses. This study is ongoing.

2.4 | Secondary proposals

In addition to the main projects listed above, group members pro-

posed their own projects making the best use of the gathered data.

The current projects are listed below. Further projects are anticipated.

2.4.1 | Structural correlates of mild mesial
temporal lobe epilepsy with and without hippocampal
sclerosis

TLE is the most common form of focal epilepsy in adulthood. When

seizures start in the internal portion of the temporal lobe, the syn-

drome is called mesial TLE (MTLE), which accounts for 80% of TLE

cases. More than 30% of patients with MTLE do not respond to anti-

epileptic medications, whereas a mild form of MTLE (mMTLE) has

been recently described, which is characterized by seizure onset in

adulthood, unremarkable past medical history, viscero-sensory auras,

and long-term seizure freedom (>24 months) with or without anti-

epileptic medication (Labate et al., 2011). Approximately one third of

patients with mMTLE have MRI evidence of hippocampal sclerosis

(HS), which was previously considered a hallmark of refractoriness.

Mild MTLE represents an important opportunity to better delineate

the biological substrates underlying the epileptic syndrome itself, and

the ENIGMA-Epilepsy project has provided a unique chance to carry

on this investigation over a very large cohort of subjects. Adult-onset

mMTLE often provides few clues to suspect delayed appearance of

refractoriness. Very recently, a longitudinal study has shown the long-

term outcome of patients with mMTLE over a mean follow-up of

12 years (Labate et al., 2016). Over this period, 25% of the patients,

who all had mMTLE at time of enrolment, eventually developed

refractoriness. Survival analysis showed that mMTLE patients carrying

radiological evidence of HS since recruitment have a three times

higher likelihood of becoming refractory later on in life than those

without HS.

In the light of these findings, and with the support of the

ENIGMA-Epilepsy Working Group, we are using locally-processed

T1-weighted MRI data from multiple centers to investigate differ-

ences in mMTLE patients divided on the basis of the presence/

absence of HS, since this has been found to be the major risk factor

for development of refractoriness. This provides an unprecedented

chance to study this relatively benign syndrome on a larger scale, to

test the hypothesis that people with mMTLE with HS may present dif-

ferent patterns of subcortical atrophy and cortical thinning compared

with patients without HS and to healthy controls. While the first stage

of the project has taken into account only structural data, in the future

we aim to integrate data from the DTI study of ENIGMA-Epilepsy, to

investigate potential white matter correlates specific to mMTLE

with HS.

2.4.2 | Structural covariance networks and
network-based atrophy modeling

The adoption of mathematical techniques to study complex systems

in neuroimaging has led to a shift in understanding healthy and dis-

eased brains away from a focus on individual regions, and toward

approaches highlighting the importance of large-scale brain networks

(Bassett & Sporns, 2017; Bullmore & Sporns, 2009). Indeed, network

neuroscience methods have become increasingly important to study

brain development as well as aging, to capture typical inter-individual

variations in structural and functional measures, and to understand

the impact of disorders on whole-brain structure and function

(Fornito, Zalesky, & Breakspear, 2015; Stam, 2014).

Our knowledge of epileptic disorders has undergone a similar

paradigm shift, with focal epilepsies being increasingly conceptual-

ized as conditions affecting large-scale cortical and subcortical net-

works (Bernhardt, Bonilha, & Gross, 2015; Engel Jr et al., 2013;

Gleichgerrcht, Kocher, & Bonilha, 2015; Richardson, 2012; Tavakol

et al., 2019). Using measures of brain morphology, such as cortical

thickness or subcortical volumetry, a series of studies has investi-

gated inter-regional structural networks by analyzing correlational

patterns in morphological measures across patient populations suf-

fering from both focal and generalized seizures. These structural

covariance analyses tap into the coordinated morphology of
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different brain areas, with high covariance being often observed in

regions also undergoing similar maturational trajectories during

development and in regions participating in similar functional net-

works (Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013). In epi-

lepsy, initial evidence on the capacity of covariance analyses to tap

into network-level disease effects has come from previous work

focusing on the covariance of specific regions, seeding from nodes in

the mesial temporal lobe in drug-resistant TLE (Bernhardt

et al., 2008; Mueller et al., 2009) or from the thalamus in patients

with GGE (Buckner et al., 2009). These studies have often demon-

strated perturbations in the covariance patterns of such disorder-

associated regions. Other studies have assessed inter-regional

covariance more systematically, aggregating covariance patterns

between multiple seeds to derive large-scale network representa-

tions (Bernhardt, Chen, He, Evans, & Bernasconi, 2011; Yasuda

et al., 2015). These networks of coupled cortical and subcortical

morphology have frequently been analyzed using graph theoretical

measures to shed light onto topological properties and organiza-

tional principles (Rubinov & Sporns, 2010). In patients with drug-

resistant epilepsy, several covariance analyses have been published

to date, complementing work based on resting-state fMRI (rsMRI)

and DTI tractography (Bernhardt et al., 2019; Bonilha et al., 2015;

Liu, Chen, Beaulieu, & Gross, 2014; van Diessen et al., 2014).

Although such studies report heterogeneous findings, the majority

of findings indicate that “focal” epilepsies are paradoxically associ-

ated with marked reconfigurations of structural network topology,

often involving increases in path length (indicating reduced global

efficiency) and clustering (indicating tighter cohesion of local com-

munities) TLE patients relative to controls.

In addition to covariance analyses, the cortical morphological fea-

ture data and specifically disorder-related atrophy maps produced

during the first phase of the ENIGMA-Epilepsy can also be related to

network-level structural, functional, and diffusion measures seen in

healthy populations. In several neurodegenerative and neuropsychiat-

ric conditions, such paradigms have proven useful to link cross-

sectional patterns of structural compromise with normative network

organization, for example in the context of building models of regional

susceptibility. Assessing different neurodegenerative and psychiatric

disorders has for example indicated that network hubs (i.e., regions

with many connections) are generally susceptible to marked atrophy

in many disorders (Buckner et al., 2009; Crossley et al., 2014), poten-

tially due to their high metabolic activity, their high plasticity, and par-

ticipation across multiple networks. Complementing such “nodal

stress” models, a series of studies has also assessed spatial similarity

between disorder-specific atrophy maps and different connectivity

measures centered on specific seeds, in order to identify “epicenters”

of network-level structural compromise (Zeighami et al., 2015; Zhou,

Gennatas, Kramer, Miller, & Seeley, 2012).

The ENIGMA-Epilepsy data set provides the added opportunity

of studying structural covariance networks across syndromes

(e.g., TLE, GGE, other epilepsies) in the largest cohort of epilepsy

patients available to date. In addition, structural atrophy and covari-

ance maps can be combined with normative connectivity data in order

to yield network-level support for pathological epicenters in the com-

mon epilepsies.

2.4.3 | Disease progression modeling in epilepsy

The first publication by the ENIGMA-Epilepsy working group rev-

ealed widespread differences in cortical thickness as well as vol-

umes of subcortical structures in people with epilepsy compared

with controls (Whelan et al., 2018). It remains unclear whether

these differences represent developmental differences (i.e., reduced

cortical thickness and volumetric differences are more prevalent in

people who are more likely to develop epilepsy) or are the result of

atrophy as the disease progresses. The data presented by Whelan

et al. (2018) showed negative correlations between cortical thick-

ness and subcortical volumes and disease duration, suggesting pro-

gressive atrophy in the common epilepsies. However, the gold

standard to establish causality between disease and atrophy are

longitudinal studies that quantify the loss of gray matter between

two or more MRI scans. Recently, such a study comprising 190 peo-

ple with epilepsy and 141 controls showed widespread cortical

thinning exceeding normal aging effects (Galovic et al., 2019).

Taken together there is evidence supporting the progressive nature

of gray matter loss.

A complementary approach to the longitudinal study design are

disease progression models, which, broadly speaking, can leverage

cross-sectional data to infer the underlying longitudinal model of

change (Oxtoby, Alexander,,, & EuroPOND consortium, 2017). One

such approach is the Event Based Model (EBM), which was intro-

duced in the domain of familial Alzheimer's disease and Huntington's

disease (Fonteijn et al., 2012) and has by now found wide application

in many brain disorders. Briefly, the idea behind the EBM is that if one

biomarker (A) typically reaches an abnormal level before a second bio-

marker (B) reaches an abnormal level, then in a data set we expect to

see many people who have abnormal levels of biomarkers A alone, or

A and B together. However, we would expect to see few people with

abnormal levels of biomarker B but normal levels of biomarker A.

Given a data set, the EBM uses this reasoning across all subjects and

biomarkers to reconstruct the most likely order in which biomarkers

reach abnormal levels over the course of the disease. In the case of

ENIGMA-Epilepsy, volumes of subcortical structures and regional cor-

tical thickness are treated as separate biomarkers. During the training

phase, the EBM converts each subjects' biomarkers into probabilities

of these biomarkers being abnormal; next, it evaluates possible bio-

marker orderings and seeks to find the ordering that maximizes the

likelihood of the observed biomarker pattern in the entire data set.

Stability of this ordering is assessed using cross validation. After the

EBM has been trained, it provides the most likely ordering of bio-

markers, which can improve understanding of the disease process, for

example by uncovering that hippocampal atrophy precedes atrophy in

the thalamus. More importantly however, a new subject can be objec-

tively staged (i.e., the most likely stage is computed) using the trained

EBM. For instance, the EBM is trained on 10 biomarkers, then,
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subjects can be assigned a stage from zero to 10, meaning that none

or all biomarkers have reached abnormal levels, respectively. Practi-

cally, a stage of k means that the first k biomarkers (in the order esti-

mated by the EBM) have reached abnormal level in the given subject.

The inferred stage can then be linked in subsequent analyses to clini-

cal markers of disease severity or prognosis.

Within this secondary project, we are applying the EBM to the

collected structural MRI data with the aim to infer the order in which

brain regions show abnormal values of gray matter in TLE, GGE, and

other epilepsies. Of particular interest is the comparison between left

and right TLE and whether the biomarker order in left TLE is the same

as in right TLE, just with swapped laterality. Moreover, the project will

investigate whether the EBM staging corresponds to duration of ill-

ness or markers of disease severity, and thus may be of clinical value.

2.4.4 | Resting state functional connectivity in
people with TLE

TLE can be considered a disorder involving a discrete set of limbic and

paralimbic brain regions involved in the generation and propagation of

seizures. However, human and animal models have shown that

numerous cortical and subcortical brain regions are involved in the

condition. These findings support the view that seizure activity in

focal epilepsy originates within intra-hemispheric networks, which is

particularly relevant in understanding impairments in higher order

brain functions that commonly occur with the condition.

RsfMRI allows the identification of atypical functional connectiv-

ity within and between large-scale brain networks and provides a

unique opportunity to study dysfunctional brain architecture. Prelimi-

nary evidence from resting state studies suggests that the condition

chronically alters activity in brain networks controlling basic functions

such as cognition, attention, and emotion (Seeley et al., 2007; Buck-

ner, Andrews-Hanna, & Schacter, 2008; Harrison et al., 2008; Sheline,

Price, Yan, & Mintun, 2010; van den Heuvel & Hulshoff Pol, 2010;

Clemens et al., 2011; Cataldi, Avoli, & de Villers-Sidani, 2013): these

findings need to be validated in larger samples.

Through the ENIGMA-Epilepsy working group, we have launched

a multicenter study to identify atypical functional connectivity in

resting-state networks in people with TLE. This study will enable the

validation of preliminary findings of network abnormalities reported in

people with epilepsy, advance our understanding of disordered func-

tional anatomy in TLE and provide insights into clinical manifestations

of TLE that are currently unexplained.

2.4.5 | Using imaging and genetic data sets to
explore the mechanisms underlying additional
phenotypes in the epilepsies: Drug resistance and
sudden unexpected death in epilepsy

In clinical epilepsy practice, there are many important phenotypic fea-

tures that are unexplained. Amongst these are the phenomenon of

drug resistance, with seizures that continue to occur despite treat-

ment with appropriate antiseizure drugs: drug resistance occurs in

about 30% of patients, and is associated with higher rates of com-

orbidities and premature mortality (Löscher, Potschka, Sisodiya, &

Vezzani, In press). Sudden unexpected death in epilepsy (SUDEP) is a

tragic outcome which affects an incidence of at least 1 per 1,000

patient years, with higher rates in people with uncontrolled general-

ized tonic–clonic seizures (Whitney & Donner, 2019). Neither impor-

tant aspect of the epilepsies is currently preventable, nor fully

understood. In SUDEP, brain structural and functional imaging abnor-

malities have been reported (Allen et al., 2017; Allen et al., 2019;

Allen, Harper, Lhatoo, Lemieux, & Diehl, 2019; Wandschneider

et al., 2015), but these are from comparatively small studies.

ENIGMA-Epilepsy offers the chance to study these aspects of epi-

lepsy in larger numbers of patients, and both drug resistance and

SUDEP are active areas of study in ENIGMA-Epilepsy, with the added

value that genetic data can also be merged with information from

processed MRI data.

2.4.6 | Deep learning

Deep learning, a type of machine learning, can be broadly summarized

as artificial intelligence (AI), which collectively offers the benefits of

identifying patterns in complex data and out-of-sample prediction. It

can provide some additional insights, typically if very large data sets

are employed.

In the context of neuroimaging, patterns in complex data can be

difficult for the human eye to fully grasp, particularly when multiple

dimensions are present. For example, it is relatively straightforward to

appreciate that the hippocampus may exhibit atrophy on T1 weighted

images, hypometabolism on interictal nuclear medicine studies and

high-probability of being a generator of interictal discharges on high-

density EEG source reconstruction. However, it becomes more diffi-

cult to fully appreciate the complexity of multiple dimensions when

broader networks are involved and do not fully overlap, or when there

are more subtle abnormalities. In this context, AI offers the benefits of

“filtering” this information and providing a summary of the concordant

versus nonconcordant information from multiple modalities. This is

particularly relevant when imaging modalities such as functional or

structural connectivity are taken into account, since these can be

somewhat difficult to visualize. AI can provide important decision sup-

port tools for the identification of clinical phenotypes.

Machine learning applied to epilepsy is still in its nascent stages,

but there have been promising results from pilot studies suggesting

that it can be sensitive to abnormalities related to the disease. For

example, previous work has demonstrated high accuracy in discrimi-

nating the brains of people with TLE from those of healthy controls

using support vector machine (SVM) based on microstructural abnor-

malities in the medial inferior aspect of the temporal lobes (Del Gaizo

et al., 2017). Using multimodal imaging, Bennet et al. demonstrated

that seizure laterality could be predicted with high accuracy in MRI-

positive and MRI-negative cases of TLE based on hippocampal or
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temporal lobe information, respectively (Bennett et al., 2019). Impor-

tantly, Kamiya demonstrated that DTI structural brain connectomes

(which are invisible to the human eye) could be accurately used for

lateralization of TLE (Kamiya et al., 2016). These studies underscore a

few important points:

1 Conventional machine learning could be helpful for detecting invisi-

ble patterns in TLE that could help to lateralize seizure onset and

possibly predict clinical outcomes (e.g., neuropsychological func-

tion) (Bennett et al., 2019; Del Gaizo et al., 2017; Frank

et al., 2018; Kamiya et al., 2016; Munsell et al., 2019).

2 The findings so far have been mostly restricted to TLE. Arguably,

phenotyping other forms of epilepsy may be of greater importance

since these are the most challenging cases, for which computer-

aided diagnosis may be most needed.

3 While conventional machine learning is a powerful form of AI, deep

learning offers a wider range of applications and potentially better

accuracy. Given their high parametric complexity, these algorithms

may perform particularly well when leveraging big data sets.

ENIGMA-Epilepsy provides a large representative multimodal

imaging data set across multiple centers, being thus optimal for the

application of deep learning in epilepsy. The limitations related to

sample size and representativeness of data are minimized by the col-

laborative environment and by the breadth of data. We recently

obtained NIH support for a pilot project (NINDS R21) to evaluate

whether deep learning is better in classifying TLE in comparison with

conventional machine learning, as well as whether deep learning can

successfully predict seizure outcomes following epilepsy surgery.

After this initial step is complete, future directions by ENIGMA-

Epilepsy will include: (a) leveraging complex connectome-based neural

network patterns, arguably reaching at the core of pathophysiology of

epilepsy, and leveraging deep learning ability to segment features into

subnetworks; (b) assessing convolutional neural networks with

unprocessed T1 weighted data or K-space data; and (c) the expansion

of these approaches to extratemporal epilepsy Figures 1–4.

2.4.7 | Structural changes at onset of illness

Diagnosis and management of patients who experience an event with

transient neurological deficit or loss of consciousness for the first time

is a challenging task, especially if no structural epileptogenic lesion

can be detected. Routine diagnostic methods to identify patients with

new-onset epilepsy are of limited sensitivity. A prospective multicen-

ter study based in Switzerland, “Predict and Monitor Epilepsy after a

First Seizure: The Swiss First Study” aims to determine EEG and MRI-

based biomarkers that identify network abnormalities characterizing

people with epilepsy. Neuroimaging research has mainly focused on

patients with a long history of epilepsy (Crocker, Pohlmann-Eden, &

Schmidt, 2017). With a mean disease duration of 17.4 years

(± 12.0 years), the ENIGMA-Epilepsy cohort comprises predominantly

people with long-standing epilepsy (Whelan et al., 2018). It remains

undetermined if and which structural abnormalities constitute pre-

clinical cortical reorganization caused by a predisposition to epilepsy

or whether such abnormalities develop as a consequence of the ongo-

ing illness (see also Section 2.4.3).

To address this question, a sub-analysis of the ENIGMA-Epilepsy

data set in patients with short duration of the disease is being exe-

cuted within this secondary project. People will be stratified into

cohorts of recent-onset epilepsy (illness duration ≤ 2 years), short ill-

ness duration (duration ≤ 5 years) and chronic epilepsy (duration

>5 years). Despite the strict restrictions in the first two subgroups,

the group sizes reachable via the ENIGMA-Epilepsy collaboration are

expected to be much larger than possible in single-center studies. We

will explore differences between these three cohorts and matched

healthy control groups. This sub-analysis of the retrospectively-

collected ENIGMA-Epilepsy structural MRI data set might generate

new hypotheses for people with new-onset epilepsy paralleling the

prospective Swiss First study.

3 | FUTURE PLANS

Membership of ENIGMA-Epilepsy continues to grow: indeed, we

invite researchers prompted to join our consortium as a result of this

article to make contact as detailed below. Methods development

within ENIGMA and across its constituent members provides tools for

additional analyses of existing and new data. ENIGMA-Epilepsy also

intends to move to a centralized approach that involves sharing raw

data, subject to the necessary governance structures, permitting for-

mal mega-analyses, as have a number of other groups in ENIGMA.
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