

به نام خدا

کارگاه سنجش از دور "تمرین شماره <u>3</u>"

گلسا طالبی (810398090) نگار دیلمی (810398076)

پردیس دانشکده های فنی، دانشکده مهندسی نقشهبر داری و اطلاعات مکانی _ دانشگاه تهر ان

زمستان 1401

تصحيح اتمسفرى و محاسبه تصوير رفلكتنس

۱. تصویر رادیانس منطقه

در نرم افزار ENVI جدید، فایل مورد نظر را باز میکنیم. مقادیری که نمایش داده می شود، Digital Numberها هستند که بایستی آنها را به رادیانس تبدیل کنیم.

در ابتدا باید Relectance تصویر را محاسبه نماییم. برای اینکار در قسمت Radiometric Correction، Radiometric Calibration ، Atmospheric Correction Module را انتخاب میکنیم. سپس فایل MultiSpectral را انتخاب کرده و محدوده کوچکی از تصویر را که میخواهیم در آن تبدیل انجام شود را جدا میکنیم.

Select Input File:				11.12.0
LE07_L1 LE07_L1 LE07_L1 LE07_L1 Multi.dat dem	TP_166034_20030506_20170125_C TP_166034_20030506_20170125_C TP_166034_20030506_20170125_C	1_T1_MTL_MultiSpectral 1_T1_MTL_Thermal 1_T1_MTL_Panchromatic	Subset by: 🔲 🤮 📓 🖏 📷 🕋	Update Stretch
< File Informatio	n	>		
Spatial Subset	(6006:6842),(3727:5227)			
Spectral Subset	6 of 6 Bands			
			Columns: from 6006 to 6842	total 837 pixels
o a a-		OK Cancel	Rows: from 3727 to 5227	total 1501 pixels

جدا سازی منطقه مورد نظر برای محاسبه تصوریر رادیانس

سپس با انتخاب Radiance و Apply FLAASH Setting، مقادیر پیشفرض وارد برنامه شده و در مسیر مورد نظر، تصویر Reflectanci ایجاد میشود.

در مرحله بعد اقدام به استخراج تصویر Reflectanci مینماییم. از قسمت Radiometric Correction، FLAASH Atmosphere Correction ،Atmospheric Correction Module را انتخاب میکنیم. تصویر رادیانس محاسبه شده در قسمت قبل را وارد میکنیم. در این محاسبات، چون باندها در محاسبه رادیانس نسبت به یکدیگر برتری ندارند، برای همه باندها، یک Scale در نظر میگیریم.

Radiance Scale Factors	×
O Read array of scale factors (1 per band) from ASCII file	
Use single scale factor for all bands	
Single scale factor 1.000000	
OK Cancel	

وزندهی به باندهای تصویر Radiance برای تولید تصویر Reflectance

مسیر فایل خروجی رادیانس و فایل مشخصات آن را وارد میکنیم. سپس از فایل Lon ،Lat ،MTL و Altitude مرکز تصویر را محاسبه کرده و وارد میکنیم. با توجه به نوع ماهواره، Sensor Type را مشخص میکنیم(در اینجا Landsat-8 OLI را انتخاب میکنیم)

DATE_ACQUIRED = 2003-05-06 SCENE_CENTER_TIME = "07:08:49.6844686Z"

CORNER_UL_LAT_PRODUCT = 38.43499 CORNER_UL_LON_PRODUCT = 47.94566 CORNER_UR_LAT_PRODUCT = 38.47445 CORNER_UR_LON_PRODUCT = 50.70193 CORNER_LL_LAT_PRODUCT = 36.46642 CORNER_LL_LON_PRODUCT = 48.02475 CORNER_LR_LAT_PRODUCT = 36.50318 CORNER_LR_LON_PRODUCT = 50.70967

با توجه به نوع منطقه انتخابی(بدون ایروسل، شهری، روستایی، دریایی و تروپوسفریک) Aerosol Model را انتخاب میکنیم. اگر Aerosol Retrieval، (K-T)، Aerosol Retrieval، از قسمت MultiSpectral Settings، KT Lower Channel و باند SWIR2 و باند SWIR2 و باند SWIR2 و باند Mathematical Retrieval را بر ابر باند Red قرار میدهیم. از روی Latitude و ماه دریافت تصاویر و با کمک Help، Model

ILAASH Atmospheric Correction Model Input Parameters	_		×			
Input Radiance Image E:_Rem\RS_W (Remote Sensing Workshop)\RSW_HW3\Radiance.dat						
Output Reflectance File E:_Ptem\RS_W (Remote Sensing Workshop)\RSW_HW3\Reflectance_						
Output Directory for FLAASH Files E:_Rem\RS_W (Remote Sensing Workshop)\RSW_HW3\						
Rootname for FLAASH Files FLAASH_						
Scene Center Location DD <-> DMS Sensor Type Landsat-8 OLI Flight Date Lat 37 15 41.32 Sensor Altitude (km) 705.000 May v 6 v 2003 e Lon 50 9 59.91 Ground Elevation (km) 0.000 Flight Time GMT (HH:MM:SS) Pixel Size (m) 30.000 7 e : 8 e : 49 e						
Atmospheric Model Sub-Arctic Summer V Aerosol Model Rural V						
Water Hetrieval No UT Aerosol Retrieval 2-Band (K-T)						
Water Column Multiplier 1.00 Initial Visibility (km) 40.00						
Apply Cancel Help Advanced Settings	Save	Res	tore			

تنظیم پار امتر های تصویر Reflectsnce و فایل FLAASH

۲. تصویر رفلکتنس خروجی مدل تصحیح اتمسفری FLAASH منطقه

در نهایت فایل FLAASH و Reflectance را ایجاد میکنیم.

S FLAASH Atmospheric Correction Results	-		×	:
File				
FLAASH Run Date: Mon Jun 20 03:09:34 2022 Input File: E:\Fterm.RS_W (Remote Sensing Workshop)\RSW_HW3\Radiance.dat Output File: E:\Fterm.RS_W (Remote Sensing Workshop)\RSW_HW3\Reflectance_ Template File: E:\Fterm.RS_W (Remote Sensing Workshop)\RSW_HW3\FLAASH_templa Visibility = 53.4776 km Average Water Amount = 2.0813 cm	te.t	xt		< >
<			>	

نتايج حاصل از ايجاد تصوير Reflectance

فایل Reflectance خروجی

طبقه بندی بدون نظارت و استخراج نمونه های آزمایشی و آموزشی

۳. پار امتر های بهینه روش های طبقه بندی K-Means و ISODATA

پارامتر های ایجاد دستهبندی روش نظارت نشده ISOData را به صورت زیر وارد میکنیم:

SODATA Parameters Number of Classes: Min 5 ● Max 5 ● Maximum Iterations 5 ● Change Threshold % (0-100) 5.00 Minimum # Pixel in Class 500 ● Maximum Class Stdv 5000 Minimum Class Distance 5.000 Maximum # Merge Pairs OK Queue Cancel Help	Maximum Stdev From Mean Maximum Distance Error Output Result to File Output Result to File Memory Enter Output Filename Choose E:_Rem\RS_W (Remote Sensing Workshop)\RS'
---	---

دسته بندی به روش ISODATA پارامتر های ایجاد دستهبندی روش نظارت نشده K-Means را به صورت زیر وارد میکنیم:

K-Means Parameters ×	:
Number of Classes 5	
Change Threshold % (0-100) 5.00	
Maximum Iterations 5	
Maximum Stdev From Mean	
Maximum Distance Error	
Output Result to File Memory	
Enter Output Filename Choose	
K_Means	
OK Queue Cancel Help	

پارامتر های روش K-Means

^{دسته بند}ی به روش K-Means ۴. خوشه بندی تصویر و مقایسه و تحلیل نقشههای طبقهبندی شده بدون نظارت

این روش دقت قابل قبولی در دسته بندی دارد و به خوبی میتواند پوشش گیاهی، دریا، ساختمانها را تشخیص دهد اما در تشخیص ارتفاعات ضعیف است.

روش ISODATA نسبت به روش K-Means مرز کمتری برای کلاسها در نظر میگیرد و آنها را بیشتر از روش دیگر، در هم ادغام میکند.

٥. طبقه بندى با نظارت

تصویر مورد نظر را وارد ENVI میکنیم و با ابزار ROI در قسمت Basic Tools، تصویر را به کلاسهای مختلفی تقسیم میکنیم. در نهایت پس از دسته بندی، منطقه مورد نظر به ۶ کلاس تقسیم میشود.

دسته بندی تصویر آموزشی(Train) با ROI

با توجه به کلاس های انتخاب شده، اقدام به دسته بندی با دو روش MAHALANOBIS Distance و PARALLELEPIEPED CLASSIFIED میکنیم. در ادامه تصاویر مربوط به نتایج این دو روش دسته بندی را مشاهده میکنید.

دستهبندی نظارت شده به روش PARALLELEPIEPED CLASSIFIED و MAHALANOBIS Distance

۶. گزارش ارزیابی دقت طبقهبندی
یک ROI آزمایشی همانند ROI آموزشی میسازیم:

دسته بندی تصویر آزمایشی(Test) با ROI

از قسمت Confusion Matrix ، Post Classification ، Classification ، listic را انتخاب میکنیم. تصویر خوشهبندی شده و ROI مورد نظر را انتخاب کرده و کلاسهای متناظر را دو به دو با یکدیگر میکنیم جفت میکنیم:

Match Classes Param	eters X				
Select	Select				
Ground Truth ROI	Classification Image				
	Unclassified				
Ground Truth ROI					
Classification Class					
Add Combination					
Matched Classes					
Region #3 <-> Region #3 Region #4 <-> Region #4 Region #5 <> Region #6	Blue] 15953856 points [Yellow] 1068404 points				
Region #5 <-> Region #5	Cyan j 626376 points				
Region #7 <-> Region #7	Maroon] 911785 points				
OK Cancel					

جفت کردن ROIها و کلاسهای تصاویر خوشه بندی شده

Class Confusion N	/latrix				- 0	×
File						
Confusion Matri	x: E:_Fterm\	RS_V (Remote	Sensing Works	hop)\RSW_HW3\	Mahala	^
Overall Accurac Kappa Coefficie	y = (7582859/ nt = 0.7874	18694928) 87 .	2101%			
	Ground Tru	th (Pixels)				
Class	Region #1	Règion #2	Region #3	Region #4	Region #5	
Unclassified	0	0	0	0	0	
Region #1 [Re	104156	96953	0	567	21762	
degion #2 [Gr	14722	584926	E010044	17804	3293	
region #3 [BI	710	04	5218344	1000500	10004	
Region #4 [re	1076	74	0	1033570	207110	
Region #5 [Cy Region #6 [Ma	2120	21260	0	202705	20/110	
Region #0 [Ma	17	528	0	203703	80	
Total	123627	703861	5218344	1435616	252624	
	Ground Tru	th (Pivels)				
Class	Region #6	Region #7	Total			
Unclassified	nogron #0 0		10:01			
Region #1 [Re	102985	ő	326423			
Region #2 [Gr	97070	19325	737140			
Perion #3 [B]	298	9845	5228487			•

دقت ارزیابی شده برای طبقه بندی MAHALA

Class Confusion N	latrix				- 0	×
File						
Confusion Matri	x: E:_Fterm\	K5_V (Kemote	Sensing Works	nop)\RSW_HW3\	Parallel	^
Overall Accuracy	v = (5628870∕	8694928) 64.	7374%			
Kappa Coefficie	nt = 0.4360	,				
C1	Ground Iru	th (Pixels)	D	D	D	
UIASS	Region #1	Region #2	Region #3	Region #4	Region 4	15
Perion #1 [Pe	122798	702960	0	464211	193	13
Region #2 [Gr	300	894	ň	652573	112	84
Region #3 [B]	000	Ű.	5105475	002070	112.	Ĩ.
Region #4 [Ye	496	7	0	315100	10559	52
Region #5 [Cy	31	Ó	112869	3732	8460	3
Region #6 [Ma	0	0	0	0		0
Region #7 [Ma	0	0	0	0		0
Total	123627	703861	5218344	1435616	25262	24
	Ground Tru	th (Pixels)				
Class	Region #6	Region #7	Total			
Unclassified	0	0	1894			
Region #1 [Re	273303	324699	1937314			
Region #2 [Gr	12989	2103	680093			
Region #3 [Bl	0	374	5105849			¥
<						> .:

دقت ارزیابی شده برای طبقه بندی PARALLEL

با بررسى اطلاعات بالا مىتوان نتيجه گرفت دقت خوشه بندى PARALLELEPIEPED بيشتر از دقت خوشه بندى MAHALANOBIS است.

استخراج اطلاعات ارتفاعی منطقه (مدل رقومی زمین)

۷. نقشه شیب و جهت شیب منطقه

تصویر DEM مربوط به منطقه مورد نظر را از داده ای موجود در سایت Elearn تهیه میکنیم. سپس در قسمت Topographic Model، Topographic را انتخاب میکنیم. درنهایت (Slop(Percent را انتخاب کرده و نقشه شیب را ایجاد میکنیم.

Yopo Model Parameters	×
Topographic Kernel Size 3	
Select Topographic Measures to Compute Glope (Degrees) Aspect Shaded Relief Profile Convexity Plan Convexity Longtudinal Convexity Cross Sectional Convexity Minimum Curvature Maximum Curvature RMS Error Biope (Percent)	
Number of items selected: 1 Select All items Clear All items	
Compute Sun Bevation and Azimuth Elevation	
Output Result to File Memory Enter Output Filename Choose E_Pterm\RS_W (Remote Sensing Workshop)\S	loj
OK Queue Cancel	

انتخاب (Slop(Percent برای ایجاد نقشه شیب

نقشه شيب منطقه

۸. طبقه بندی به روش درخت تصمیم گیری

ابتدا منطقه کو هستانی به از ای شیب بیشتر از 50% جدا میکنیم(قهو های). با کمک + و - بودن پار امتر NDWI، خشکی را از دریا جدا میکنیم.

در صورتیکه NDWI منطقهای مثبت و SWI آن بزرگتر از -235 باشد در قسمت عمیق دریا قرار دارد(آبی پررنگ) و اگر SWI آن کمتر از -235 باشد، در قسمت کم عمق آب قرار خواهد داشت(آبی کمرنگ).

در صورت منفی بودن NDWI منطقه ای، اگر شاخص SWI آنها بیش از -400 منطقه زراعی است (زرد) و اگر کمتر از آن باشد، منطقه شهری یا دار ای پوشش گیاهی است.

اگر SWI کمتر از -400 و NDBI بیشتر از -0.6 باشد، منطقه شهری است(سفید) و اگر NDBI کمتر از -0.6 باشد منطقه دارای پوشش گیاهی خواهد بود.

اگر NDBI کمتر از -0.6 و NDVI بیشتر از 0.8 باشد، منطقه دارای پوشش گیاهی زیاد و اگر کمتر از آن باشد دارای پوشش گیاهی کمی خواهد بود.

درخت تصمیم گیری

كلاسبندى منطقه باكمك درخت تصميمكيرى